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The Inviscid Burgers Equation with Initial Value of
Poissonian Type
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We study the discontinuities (shocks) of the solution to the Burgers equation in
the limit of vanishing viscosity (the inviscid l imit) when the initial value is the
opposite of the standard Poisson process p. We show that this solution is only
defined for t e (0, 1). Let T0 = 0 and Tn, n^ 1, be the successive jumps of p. We
prove that for all M > 0 the inviscid limit is characterized on the region x e
( — oo, M],t e (0, 1) by the increasing process N(t) = sup{n e N | M + nt> Tn}
and the random set I(x) = {n e {0,..., N(t)} I Tn - nt ̂  x < Tn+1 - nt}. The posi-
tions of shocks are given in a precise manner. We give the distribution of N(t)
and also the distribution of its first jump. We also prove similar results when the
initial value is uu(y,0)= -up(y/u2)+u-1 max(y, 0), u e(0, 1).
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1. INTRODUCTION

The one-dimensional Burgers equation(1) without force has the form d,u +
ud^u — vd^u, x e R, t>0. Here v is the viscosity. Introduce a potential
function i//, defined as u = — d v \l/. The Hopf-Cole substitution i/> = 2v ln 6
shows that 9 satisfies the heat equation d,0 = vd\9. Using this fact one can
write down for the solution u = u(x, t, v) the explicit expression

where

1 Laboratoire de Statistique et Processus, Universite Du Maine. 72017 Le Mans Cedex,
France.

0022-4715 97/0800-0873$ 12.50/0 C 1997 Plenum Publishing Corporation

873



874 Dermoune

For the case u(//, 0) = —p(rj), p is the standard Poisson process on R +, (1)
works only for t e (0, 1). In fact it is well known that lim^^ p(s)/s-> 1
a.s., which implies limy_> +Q0 2 \% p(s) ds/y2 = 1 a.s., and for all x e R,
t e (0,1), limy-> +00 2F(x, y, t)/y2 = 1-t / t>0 a.s., which yields that (1)
works for t e (0, 1). But for uu(n, 0) = -up(n/u2) +u-1 max(n,0) (1) works
for t e (0, +00).

Burgers(1) and Hopf(3) discussed the behavior of solutions u(x, t, v) as
v-»0+ (inviscid limit(4,5)) while the initial value u(x, 0) is kept fixed. Let
us formulate the following theorem by Hopf.(3)

Hopf's Theorem. For fixed x,t, the function y e R -> F(x, y, t)
attains its smallest value for one or several values of y, the smallest and the
largest of which are denoted by y * ( x , t) and y*(x, t), respectively. Then, for
every x and t

In particular limv->0+,^.v,r-,«(£ *, v) = x-y*(x, t)/t = x-y^(x, t)/t
holds at every point, x e R, t > 0, where y* = y*.

This result is interpreted as follows. The inviscid limit u(x,t,0) is not
well defined because it is multi-valued for those (x, t) where y * ( x , t) /
y*(x, t). These points are interpreted as shocks, and y* — y*/t is the size
of the shock (see e.g.,(6) for a detailed study). The aim of this work is to
characterize the locations of shocks in the cases where the initial value is
equal to u(y,0)= -p(y) or uu(y, 0) = -up(y/u2)+u-1 max(>,0);0<u< 1.
The Burgers equation with Brownian motion as an initial value was
proposed and studied numerically by She, Aurell and Frisch.(4) Ya. G.
Sinai(5) obtained further rigorous quantitative results which have been
numerically verified in ref. 4. It is well known that u^(y, 0) converges in law
to the Brownian motion B(y), so our study can be seen in a liberal sense
as a macroscopic approach to the Brownian case.

Before giving the plan of the paper we need some notations. Let M > 0
and N(t) = sap{neH\M + nt>Tn] where T0 = 0 and Tn,n>1 are the
successive jumps of the Poisson process p. For the initial value u(y, 0) =
—p(y) we prove in Proposition 2.1 that for xe( — oo, Af], fe [0 , 1) fixed
the smallest value of y e R -»F(x, y, t) is attained at several values among
the points x + mt, where we {0,..., N(t)} and we show that the inviscid
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limit u(x, t, 0) is completely determined by the set I(x) = {n e {0,..., N(t)} \
Tn — n t ^ x < T n + 1 —nt}. Theorem 2.1 gives the positions of shocks which
belong to ( —oo,M] at time t e (0, 1). More precisely, if we define for
S0 = 0, and m ̂  1

then we prove that shocks are located at mSm — nSn/m — n, for some m ^ n
belonging to {0,..., N(t)}. A precise characterization of these integers is also
given.

In Proposition 3.1 we prove that there exists critical time J1 such that
for all t e [0, J1), N(t) = N(0). In Propositions 3.2, 3.3 we give the distribu-
tions of /, and N(t) for all t e [0, 1). In Theorem 3.1 we prove that for
J = mm(J1 , min{Tn + 1 |0^«<A^(0)}) the positions of shocks which belong
to (-00, M] at time te[0,J) are {Tn +1 -(2n + 1/2) t \ Q ^ n < N ( 0 ) } .

The study of the case when the initial value u^y, 0) = —np(y//j2) +
max(y, 0)//i is similar to the latter case and we only mention this at the
end of the Section 3. In the appendix we give an explicit description of the
set I(x).

Remark. If u(y, 0) = p(y), or u,,(y, 0) =np(y/fi2) -max(>>, 0)//i; /* is
small, then one can easily see that there are no shocks at all.

2. THE CASE u(y,0)=-p(y)

In this case F(x, y, t) can be described explicitly as follows: if
y e (-oo,0] then F(x, y, t) = (x-y)2/2t. If y e ( T n , T n + 1] then

and dyF(x, y , t ) = t - 1 ( y - ( x + tn)).
For an interval / of R, y(x, t, I) denotes the y-coordinates of the

minimum of the function y e I-» F(x, y, t), considered at fixed values of x
and t. Then three cases can be distinguished:

^,: (x + tn) ̂  Tn in this case y(x, t, [Tn ,Tn +1]) = Tn.

£f2: T,,^(x + nt)^Tn + 1, in this case y(x, t, [ T n , Tn+1]) = x + nt.

^3: Tn + l ^x + tn, in this case y(x, t, [T n , Tn + 1]) = Tn + 1. Now we
can announce the following proposition.
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Proposition 2.1. (1) Let t e [0,1), for M>0 the random
variable N(t) = sup{n e N | M + nt > Tn] is a.s finite.

(2) Let I(x) = {n G {0,..., N(t)} \Tn-nt^x<Tn + 1 - n t } , f o r all x^M,

(3) The inviscid limit is given by u(x, t, 0) = — p(y(x, f, R)) and its
distribution is completely determined by the set I(x).

Proof. The strong law of large numbers yields the finiteness of N(t).
Let us prove the rest of the proposition. If x < Tn — nt then from ^1,S2,S3
there exists an integer m < n such that F(x, x + mt, t) ^ F(x, Tn, t). If x ^
Tn+1—nt then again from £ft, y2, 5  ̂there exists an integer m^n such that
F(x, x + mt, t) <F(x, Tn + 1 , t). Now the statement of the proposition
becomes obvious. A detailed description of the set I(x) is given in the
appendix.

Now let us study the position of shocks. From Proposition 2.1 we
have to compare the quantities F(x, x + mt, t) for m e I(x). Let Sm be the
random variable defined by (2) then

and x + mt e y(x, t, K) iff for all n, jeI(x) such that n<m<j,

Let C(x) be the set of the integers m e I(x) satisfying (4), then we have
y(x, t,R) = {x + mt,me C(x)}, and x is a shock iff the set C(x) contains at
least two integers. The following theorem gives a precise characterization of
the set C(x).

Theorem 2.1. (1) If m, n e C(x) then

(2) For all t fixed the set C(x) contains at the most two integers.
(3) The integers n<m belong to C(x) iff the three following condi-

tions are satisfied:

(i) Tm-mt^x^Tm + 1 - mt, Tn-nt^x^Tn + l-nt,
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(ii) mnH<JiJen^jSj-nSn/j-n = mSn,-nS,,/m-n = maxy<m y e / ( v )

jSj-mSJj-m = x,
(in) max j<n, J e I ( x ) jSj - nSn/j -n^x^ minm <j, Je I(x) mSm -jSj/m - j.

Proof. (1) If m,n e C(x) then F(x, x + nt, t) = F(x, x + mt, t), and
from (3) we have the formula (5).

(2) Suppose that m,n, je C(x), from (5) we have mSm — nS/m — « =
mSm —jSj/m—j, which implies that f is not deterministic.

(3) Let n<me C(x), then m, n e I(x), which is equivalent to the con-
dition (i). From (4), (5) we have the conditions (ii) and (iii). The proof of
the part "only if is easy.

3. THE LOCATIONS OF SHOCKS WHEN THE TIME IS NOT
EXCEEDING CRITICAL VALUES

The following proposition gives the variation of N(t) with respect to
the time t.

Proposition 3.1. Let us define J1 =mink>N(0} Tk — M/k. Then
t e (0, 1 ) ^ > N ( t ) is an increasing and N(0 ) = N(t) for all t c[0, J1).

Proof. It is easy to show that t -» N(t) is increasing. The integer N(t)
is the smallest integer satisfying t <mink>N( t ) Tk — M/k, so if t < e [ 0 , J 1 )
then N(t)^N(0). Now from the monotonicity of t-^N(t) the result
#(0) = N(t), W e [0, J,) becomes obvious.

The following result gives for t e [0, 1) the law of N(t).

Proposition 3.2. For t e [0, 1) let us define

then we have for all n e N

In particular N(0) has the Poisson distribution with parameter M.
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Proof. Let an(t) be the real M+nt. We have

Let us define for n e N and t e (0, 1) the random walk Rnm(t) by ZT= i K -')>
where T", T",... are mutually independent random variables with common
exponential distribution with parameter 1 and independent of T1,..., Tn + 1.
From the independent of (T1,..., Tn + 1) and (Tm-Tn + 1 ,m>n + 1), the
probability P(N(t) = n) is the product of the two following probabilities:
P(Tn<an(t)<an+1(t)<Tn+1) and P(min K>1 Rnk(t)>an + 1(t) - Tn + 1|
T n ^ a n ( t ) ^ a n + 1 ( t ) ^ T n + 1 ).

The probability

From the Khintchine-Pollaczek formula(2) (p. 392), we have for all x<0
that P ( m i n m > 1 R n m ( t ) ^ x ) = ( 1 - t ) ^ = 0 d p * k ( - c o , x ] , where

From the Laplace transform we can see that for n e M , — ( n + 1 ) t ^
x^-nt, Zr=o**/c(-w)x]=Z7^ + 1 (x + jt)j/j!exp(-x-jt). Using
that and using the law of (Tn , Tn + 1) we obtain the result.

The following proposition gives a simplified form of ft(s) and the
distribution of J1.

Proposition 3.3. From the notations of Proposition 3.2 we have
for s e [ 0 , 1):

(1) B(s)={En=0 i(ns)n/n!e-ns}-1.
(2) P(Ji^s) = Q\p(-M-s + Me-s)f3(s).

Proof. From Proposition 3.2 we have for all .se[0, 1) and for all
M > 0 , n e M that Z,™=0(M + ns)n/n! e x p ( - M - n s ) 0 ( s ) = 1. By tending
M->0+ we have the result (1). Let us prove (2).
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Using the independent of (Tk- TJ+1 -(k-(j+ 1)) s, k> j + 1) and
T1,...,Tj+1 we have

Now from the Khintchine-Pollaczek formula we have the result.
The following theorem gives explicitly the position of shocks when the

time t is not exceeding J1.

Theorem 3.1. If t <J = min(J1, min{Tn + 1 | 0^«<Ar(0)}) then the
position of shocks belonging to (— oo, M] are given by

Proof. The initial value u(x, 0) = -p(x) is such that u(T-n+1,0)>
u(T+ + 1 ,0 ) for all neN. Then(3) Tn + 1 is the starting point of a discon-
tinuity line sn + 1 ( t ) for the inviscid limit u(x, t, 0). This line satisfies the
Rankine-Hugoniot condition

From that we obtain sn + 1 ( t ) = Tn + l —t. For ?<min{T,, + 1 | 0^

n<N(0)} the discontinuity lines sn + 1, 0^n<N(0) cannot intersect. From
Propositions 2.1, 3.1 we conclude that the discontinuity lines in the region
xe( — ao,M], t e [ 0 , J) are the segments sn+1, 0 ^ n < N ( 0 ) . Which
achieves the proof.



880 Dermoune

Now we show how we can derive the study of the case uM(y, 0). If
ye(-oo,0] then we have F(x, y, t) = (x-y)2/2t. If y e (^2Tn,//2 T,,n + 1]
then

and d y F ( x , y , t ) = (y ). We distinguish three cases:

(x + npt) <//(// 4- /) Tn implies that

H(H + t) Tn^(x + nnt}^n(n +1) Tn +, implies that

and //(// + t) Tn + 1 ^ ( x + n^t) implies that

For M>0 and t^0 let us define the random variable N^(t) =
sup{neN\(M + n(it)>/i(ft + t ) T n } . We have a similar statement to
Proposition 2.1 which gives that for all x ^ M,

Let m^N^t) such that /t(x + m/tt)//t + tey(x, t, R), then the quantity
F(x, n(x + mjjt)/fj. + t, t) is equal to

Let us denote Sm(p,)=n(n + t) 2r=-i (m — i+1) T, — m2iit/2. A point x is a
position of the shock if there exist k,m^ N(p) such that ft(x + mttt)/ft +1
and n(x + k/nt)//n +t are the absolute minima of the map y e R -> F(x, y, t),

From (6) the shock points have necessary the form x(n) = — -*—.
m — k

To characterize them, we can repeat the same arguments as before, Ifl(x) —
{«e{0,...,Ay/)} \/i(ii + t)Tn^(x + nftt)^fi(ft + t)T,, + 1} and Sn(/j) take
the place respectively of I(x) and Sn.
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APPENDIX

Now we give a detailed description of the random set I(x). From the
Proposition 2.1 the study of I(x) for x ^ M depends on the position of x w.r.t.
Yk = Tk-kt, and Zk = Tk + 1-kt; k^N(t). The sequences (Y0,..., Y N ( t ) ) ,
(Z0,..., ZN ( t ) ) are not ordered, so let us order them: Y ( 0 )< • •• < Y(N(I)}, and
Z(0) < <Z(N(y)). We denote by n(k, Y) (respectively n(k, Z)) the integer
« such that 0 ^ n ^ N ( t ) ; and Yn= Y(k) (respectively Zn = Z(k)). We have
a.s. two bijective maps from {0,..., N(t)} into itself, namely, ke {0,..., M?)} -»
n(k, Y)e {0,..., N(t)} and £e {0,..., N(t)} -» «(*, Z)e {0,..., #(/)}.

Now we order the sequence ( F,,(0, >,„..., YatWn_ n, Zn(0,Z),..., Zn(N( t ) ,Z)).
Define for 0 ^ k ^ N ( t ) the integer a(k) = sup{0< j^N(t} \ Y,,(A Y} <
Z,,(k,z)}- It is easy to see that the sequence a(k), O^k^N(t) is increasing
but not strictly increasing. Let r0,..., rf be the integers such that Zf=o r,• —
N+1, and a(0) =•••= a(r0) < a(r0 + 1) =...= a(r0 + r1)< a(r0 +
r1+1)••• <a(r0+ ••• +rp-1 + 1)= ••• =a(N(t)). Then we have

From that and from the inequality Yk ^ Zk for all k, we have the relations
r0^a(0), r0+ ••• +r,^a(r0+ ••• + r , _ _ , + l). This implies {n(0, Z),...,
«(r0,Z)} <={n(0 , r),...,«(fl(0), 7)}, and for i>l {«(0,Z),...,»(r0 +
r,+ ... +/-,., Z)}c{«(0, Jr),...,»(a(r0+ •-• +ri -1, + l), Y)}.

The following descriptions follow from the definition of I(x) and from
the notations above.
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Remark that if x lies in [7,,,,. Y}, Yn ( i + 1 , y)], [ Yn(a(k) n, Zn(k,Z)],
[Zn ( , - z ) ,ZB ( / + K Z )]

 or lies in [£„<,.„+...+,,,Z) , Yn(a(ro + . . . + , , | + 1), y)] then
the set I ( x ) depends only on these intervals.
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